Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 171: 610-620, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37832210

RESUMO

The food waste (FW) digestion performance can be enhanced by introducing iron oxide (IO) into digesters. However, the role of IO in continuous two-stage digesters in enhancing the FW anaerobic digestion remains unclear. In this study, the effect of IO on the bioenergy recovery from a two-stage digestion process was investigated. The bioenergy recovery was significantly increased by up to 208.43 % with IO addition. The activities of dehydrogenase, α-amylase, and protease increase by 0.82-1.44, 7.24-14.56 and 7.97-20.45 times, respectively, as compared with that of the blank. With IO addition, the metabolic pathway in hydrolytic-acidogenic (HA) reactor shifted from lactic acid fermentation to butyric fermentation, which promoted stable methane production in methanogenic (MG) reactor. The activity of coenzyme F420 increased by 19.19-39.01 times, indicating that IO facilitated FW digestion by promoting hydrogenotrophic methanogenesis. The enhancement in the enzyme activity was attributable to the Fe2+ generated by dissimilatory iron reduction. According to the microbial analysis, IO enhanced interspecies hydrogen transfer between Methanobacterium and Syntrophomonas. Furthermore, IO improved direct interspecies electron transfer between Geobacter sulfurreducens and Methanosarcina. The effluent recirculation strategy greatly facilitated the hydrolysis and acidification of FW, which was critical for improving the two-stage process performance.

2.
Waste Manag ; 171: 163-172, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37660629

RESUMO

The clogging of leachate collection systems (LCSs) is a typical challenge for landfills operation. Although clogging occurs in different LCS components, its spatial-temporal distributions remain unclear. This study aimed to systematically investigate the dynamic clogging development in simulated LCSs by monitoring changes in clogging characteristics over time. Results revealed that clogging accumulated in all components of the simulated LCS during a 215-day period, including chemical clogging and bio-clogging. Distinct spatial variations in clogging components were observed along the leachate flow of the simulated LCS, with the geotextile being severely clogged due to bio-clogging (70.1 ± 3.0%-80.0 ± 0.5%). Additionally, chemical clogging mainly occurred at the top (85.4 ± 0.8%-95.0 ± 0.9%) and middle (91.2 ± 0.8%-94.9 ± 1.1%) gravel layers. Nevertheless, the percentage of chemical clogging decreased from 72.0 ± 2.1% (day 42) to 42.5 ± 2.7% (day 215) at the bottom gravel layer. Chemical clogging was the main type in the pipe, accounting for 69.6 ± 0.5% (day 215). In addition, the ratios of bio-clogging to chemical clogging changed over time in all LCS components. The spatial-temporal characteristics of clogging across LCS components can enhance the understanding of clogging mechanisms, facilitate the design optimization of LCSs, and promote the formulation of effective control strategies.

3.
Waste Manag Res ; 41(9): 1480-1485, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36912483

RESUMO

Co-landfilling of bottom ash (BA) accelerates the clogging of leachate collection systems (LCSs) and increases the risk of landfill failure. The clogging was mainly associated with bio-clogging, which may be reduced by quorum quenching (QQ) strategies. This communication reports on a study of how isolated facultative QQ bacterial strains from municipal solid waste (MSW) landfills and BA co-disposal landfills. In MSW landfills, two novel QQ strains (Brevibacillus agri and Lysinibacillus sp. YS11) can degrade the signal molecule hexanoyl-l-homoserine lactone (C6-HSL) and octanoyl-l-homoserine lactone (C8-HSL), respectively. Pseudomonas aeruginosa could degrade C6-HSL and C8-HSL in BA co-disposal landfills. Moreover, P. aeruginosa (0.98) was observed with a higher growth rate (OD600) compared to that of B. agri (0.27) and Lysinibacillus sp. YS11 (0.53). These results indicated that the QQ bacterial strains were associated with leachate characteristics and signal molecules and could be used for controlling bio-clogging in landfills.


Assuntos
Eliminação de Resíduos , Resíduos Sólidos , Resíduos Sólidos/análise , Cinza de Carvão , Percepção de Quorum , Bactérias , Instalações de Eliminação de Resíduos , Eliminação de Resíduos/métodos
4.
J Environ Manage ; 324: 116350, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36179474

RESUMO

Fouling and clogging are persistent challenges to the collection and treatment of leachate. The main components of fouling and clogging are calcium carbonate (CaCO3) and biofilms. However, the relationships between CaCO3 and biofilms remain to be clarified. In this study, the interaction between microbially induced CaCO3 precipitation (MICP) and biofilms was investigated using Luria-Bertani (LB) or urea media. Results showed that the bacteria promoted the precipitation of CaCO3 and the formation of a complex mixture of biofilms. The amount of formed CaCO3 in the urea medium was 12.9 times of that in the LB medium. The high MICP potential in the urea medium was associated with increased pH and alkalinity. In addition, the clogging materials exhibited a layered structure and uneven distribution over the clogging width and depth profile. These results indicated the presence of nucleation sites of CaCO3 on the surface of and inside the bacteria. This research provides insights into the regulation of MICP and biofilms through dynamic control of clogging and fouling.


Assuntos
Biofilmes , Carbonato de Cálcio , Carbonato de Cálcio/química , Bactérias , Ureia/química , Precipitação Química
5.
Sci Total Environ ; 851(Pt 2): 158263, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36030876

RESUMO

Bio-clogging in pipes poses a significant threat to the operation of leachate collection systems. Bio-clogging formation is influenced by the pipe materials. However, the relationship between bio-clogging and the physicochemical properties of different pipe materials has not been clarified yet, especially from a thermodynamic aspect. In this study, the dynamic bio-clogging processes in pipes of different materials (high-density polyethylene (HDPE), polyvinyl chloride (PVC), polypropylene (PP), and polyethylene (PE)) were compared, and their correlation with the physicochemical properties was investigated. Results showed that the bio-clogging in HDPE and PVC pipes was more severe than that in PP and PE pipes. In bio-clogging development, the predominant factor changed from the surface roughness to the electron donator parameter (γ-). In the initial phase, the most severe bio-clogging was observed in the HDPE pipe, which exhibited the highest roughness (432 ± 76 nm). In the later phase, the highest γ- (2.2 mJ/m2) and protein content (2623.1 ± 33.2 µg/cm2) were observed in the PVC simultaneously. Moreover, the interaction energy indicated that the bacteria could irreversibly and reversibly adhere to the HDPE, whereas irreversible adhesion was observed in the PVC, PP, and PE cases. The findings clarify the thermodynamic mechanism underlying bio-clogging behaviors and provide novel insights into the bio-clogging behaviors in pipes of different materials, which can facilitate the development of effective bio-clogging control strategies.


Assuntos
Cloreto de Polivinila , Abastecimento de Água , Polietileno/química , Polipropilenos , Cloreto de Polivinila/química , Termodinâmica
6.
J Hazard Mater ; 434: 128878, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35427971

RESUMO

Emissions of odorous gases and prolonged composting duration are the key concerns in the composting of digestate from food waste (DFW). In this study, different amounts of biochar derived from DFW (BC-DFW) were introduced in the composting process of DFW to decrease the emissions of ammonia (NH3) and volatile sulfur compounds (VSCs) and composting duration. The addition of BC-DFW increased the temperature and germination index during DFW composting. The group with 25% BC-DFW exhibited a 30% smaller composting duration. Significant amounts of NH3 and VSCs emissions were observed in the initial phase of DFW composting. Dimethyl disulfide (DMDS) was a prominent contributor to the odor associated with VSCs. The addition of BC-DFW facilitated the adsorption of NH3 and VSCs, and the corresponding contents decreased by 5-21% and 15-20%, respectively. Moreover,the BC-DFW accelerated the transformation of ammonium-nitrogen (NH4+-N) to nitrate-nitrogen (NO3--N), thereby alleviating the NH3 volatilization. The addition of 25% BC-DFW minimized the NH3 emission and enhanced the generation of humic-acid-like matter, thereby promoting humification. Therefore, the addition of 25% BC-DFW was optimal for promoting the degradation of organic matter and humification and odor emission reduction (e.g., NH3, DMDS).


Assuntos
Compostagem , Eliminação de Resíduos , Carvão Vegetal , Alimentos , Gases , Esterco , Nitrogênio/análise , Odorantes/prevenção & controle , Solo , Compostos de Enxofre
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...